ভগ্নাংশকে সাধারণ হরবিশিষ্টকরণ

অষ্টম শ্রেণি (মাধ্যমিক) - গণিত - বীজগণিতীয় ভগ্নাংশ | | NCTB BOOK

দুই বা ততোধিক ভগ্নাংশকে সাধারণ হরবিশিষ্ট করতে নিচের ধাপগুলো অনুসরণ করতে হবে :

১। হরগুলোর ল.সা.গু. নির্ণয় করতে হবে।
২। ভগ্নাংশের হর দিয়ে ল.সা.গু.কে ভাগ করতে হবে।
৩। হর দিয়ে ল.সা.গু.কে ভাগ করা হলে যে ভাগফল পাওয়া যাবে, সেই ভাগফল দ্বারা ঐ ভগ্নাংশের লব ও হরকে গুণ করতে হবে।

যেমন, xy, ab, mn তিনটি ভগ্নাংশ, এদের একই হরবিশিষ্ট করতে হবে।

এখানে তিনটি ভগ্নাংশের হর যথাক্রমে y, b ও n এদের ল.সা.গু. = ybn

১ম ভগ্নাংশ xy এর হর y, y দ্বারা ল.সা.গু. ybn কে ভাগ করলে ভাগফল bn, এখন bn দ্বারা xy ভগ্নাংশের লব ও হরকে গুণ করতে হবে।

xy=x×bn y×bn=xbnybn

একইভাবে, ২য় ভগ্নাংশ ab এর হর b, b দ্বারা ল.সা.গু. ybn কে ভাগ করলে ভাগফল yn ।

ab, a×ynb×yn, aynbyn

৩য় ভগ্নাংশ mn এর হর n, n দ্বারা ল.সা.গু. ybn কে ভাগ করলে ভাগফল yb.

mn, m×ynn×yn, mynnyn

অতএব, xy, ab ও mn এর সাধারণ হরবিশিষ্ট ভগ্নাংশ যথাক্রমে xbnybn, aynbyn ও mynnyn 

 

উদাহরণ ১। নিচের ভগ্নাংশ দুইটিকে লঘিষ্ঠ আকারে প্রকাশ কর :

(ক) 16a2b3c4y8a3b2c5x      (খ) a(a2+2ab+b2)(a3b3)(a3+b3)(a4b-b3)

সমাধান : (ক) প্রদত্ত ভগ্নাংশ 16a2b3c4y8a3b2c5x

এখানে, 16 ও 8 এর গ.সা.গু. হলো 8

         a2 ও a3  ''      ''           ''      a2

         b3 ও b2  ''     ''           ''       b2

         c4 ও c5  ''     ''           ''       c4

         y ও x       ''     ''           ''        1

16a2b3c4y3 ও 8a3b2c5x এর গ.সা.গু. হলো 8a2b2c4

16a2b3c4y8a3b2c5x এর লব ও হরকে 8a2b2c4 দ্বারা ভাগ করে পাওয়া যায় 2byacx

16a2b3c4y8a3b2c5x -এর লঘিষ্ঠ আকার হলো 2byacx

(খ) প্রদত্ত ভগ্নাংশটি a(a2+2ab+b2)(a3-b3)(a3+b3)(a4b-b5)

এখানে, লব =a(a2+2ab+b2)(a3-b3)

                  =a(a+b)2(a-b)(a2+ab+b2)

            হর  =(a3+b3)(a4bb5)

                  =(a+b)(a2-ab+b2) {b(a4-b4)}

                  =b(a+b)(a2-ab+b2)(a2-b2)(a2+b2)

                  =b(a+b)(a2ab+b2)(a+b)(a-b)(a2+b2)

                  =b(a+b)2 (a-b)(a2+b2)(a2-ab+b2)

 লব ও হরের গ.সা.গু. =(a+b)2(a-b)

প্রদত্ত ভগ্নাংশটির লব ও হরকে (a+b)2 (a-b) দ্বারা ভাগ করে পাওয়া যায় a(a2+ab+b2)b(a2+b2)(a2-ab+b2)

 ভগ্নাংশটির লঘিষ্ঠ রূপ aa2+ab+b2ba2+b2/a2-0b+b2 

 

উদাহরণ ২। এখানে প্রদত্ত ভগ্নাংশগুলো xx3y-xy3, axya2-b2, mm3n-mn3

এখানে, ১ম ভগ্নাংশের হর =x3y-xy3

                                       =xy(x2y2)

            ২য় ভগ্নাংশের হর =xy(a2b2)

            ৩য় ভগ্নাংশের হর =-m3n-mn3 =mn(m2-n2)

 হরগুলোর ল.সা.গু. =xy(x2-y2)(a2-b2)(m2-n2)mn

অতএব, xx3y-xy3=xa2-b2m2-n2mnxyx3-y2a2-b2m2-n2mn

             axya2-b2=ax2-y2m2-n2mnxyx2-y2a2-b2m2-n2mn

এবং      mm3n-mn3=xymx2-y2a2-b2xyx2-y2a2-b2m2-n2mn

 নির্ণেয় ভগ্নাংশগুলো xa2-b2m2-n2mnxyx2-y2a2-b2m2-n2mn, ax2-y2m2-n2mnxyx2-y2a2-b2m2-n2mn ও  xymx2-y2a2-b2xyx2-y2a2-b2m2-n2mn

কাজ : সমহরবিশিষ্ট ভগ্নাংশে প্রকাশ কর :

১। x2+xyx2y ও x2-xyxy2     ২। a-ba+2b এবং 2a+ba2-4b

Content added || updated By
Promotion